2024 ASCE KCGI Specialty Seminar; Burns & McDonnell World Headquarters - Session 7

"Practical Design-Build Applications of Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems"

> Presented By: William F. Powers III, P.E. Friday, September 13, 2024 2:50 – 3:40 PM CST

Engineered Foundation Construction

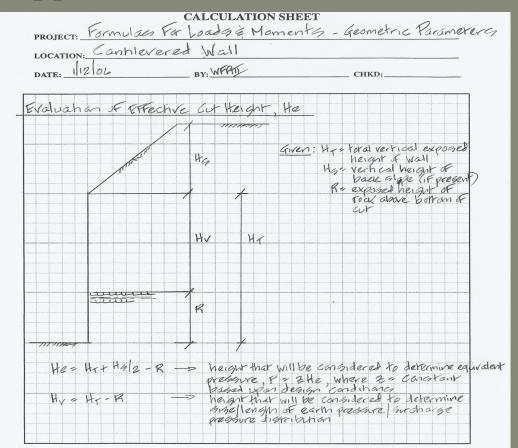
<u>We Solve Serious Problems...</u> <u>Always Remember to Smile and Have Fun!!</u>

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>What Are They?</u>

- n Series of continuous, drilled, reinforced concrete piles or piers utilized to provide the vertical elements of an excavation support and protection system.
- n Typical pile/pier diameters range from 18 to 30 inches, sometimes larger. In the author's opinion, the most efficient cost/use diameter is either 24 or 30 inches due to volumetric cost of concrete/reinforcing steel vs. wall resistance.
- n Typical pile/pier lengths are a function of the exposed excavation height and ground conditions. Piles/piers can be buried in place or exposed/shotcreted.
- n Typical pile/pier spacings range from the net "span" length to the span length plus two to three inches, depending upon the ground conditions.
- n Lateral wall resistance to earth pressures and adjacent surcharge loadings is provided either via cantilever in the pile/pier embedment below the bottom of excavation or via tiebacks or internal bracing.
- "Filler" for piles/piers consists of drilled pier concrete mix, augercast pile grout or flowable fill. Reinforcing steel consists of cages or structural steel sections (commonly wide flange beams, sometimes double channels or pipe).

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Where Are They Used?</u>

- n Mixed face geologic conditions where rock may be present above the bottom of excavation ("flagpole" condition). Very effective for higher (>25 feet) exposed wall heights and efficient for mass excavation process. Ideal for shales, sandstones and very stiff clays (N-values > 25). Not particularly suitable for extremely hard rock above the bottom of excavation.
- Rock immediately below bottom of excavation for pile/pier embedment.
 Minimizes pile/pier lengths and facilitates true cantilever condition, enabling efficient design for exposed wall heights in the 15 to 20-foot range.
- River bottom areas with cohesionless soils (rock generally deeper than 30 feet) with control of high groundwater conditions above the bottom of excavation. Not suitable for unmitigated high groundwater conditions.
- n Softer overburden conditions above bottom of excavation where the exposed excavation face may not be conducive to lagging or shotcrete.


Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>How Are They Installed?</u>

- n Open hole drilling with conventional pier drilling rig earth/rock augers and core barrels.
- n Temporarily cased drilling with conventional pier drilling rig (complete hole, place steel and concrete, extract casing) drill open hole and drop temporary casing; vibratory hammer driven/extracted temporary casing; sectional casing via casing driver or oscillator (both techniques very expensive).
- n Augercast drilling with crane attachment or fixed mast setup on conventional drilling rig (drill and grout hole, wet set reinforcing steel).
- n Permanently cased vibrate or twist casing to depth, cleanout inside of casing, place steel and concrete (materials very expensive, reduces cost effectiveness of wall system).

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Why Are They Installed (Applications)?</u>

- n Limited access conditions presence of existing utilities in proximity of wall.
 - Precluded use of tiebacks for lateral wall resistance
 - MSE wall geogrid lengths not available, requiring a terminal point for reinforcement
- n Limited access conditions right-of-way restrictions, property boundaries, structure space and easement locations in proximity of wall.
 - Not enough room for traditional double sided formed basement wall system

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Design Approach - Geometric Wall Parameters</u>

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Design Approach - Embedment Analysis</u>

COMMENTARY

For the required embedment length *L*, the maximum moment in the shaft can be calculated as

and is located at (1.5D + q) below groundline. MF \bigvee_{E} VE

Figure 13–1. Foundation in Cohesive Soil Broms' assumptions for the distribution of a cohesionless soil's reactions at ultimate load are shown in Figure 13–2. For cohesionless soils, Broms' procedure may be given by the following equations, from which the required ombodment length L can be found by using trial and error:

Eq. C 13-4

Eq. C 13-5

Ea. C 13-6

1.5 D

Eq. C 13-7

e Eq. C 13–8

- 9cD

 $H = \frac{M_F}{V_F}$

 $q = \frac{V_F}{9cD}$

 $M_{Fmax} = V_F(H + 1.5D + 0.5q)$

9cD -

 $L^3 - \frac{2V_FL}{2M_F} - \frac{2M_F}{2M_F} = 0$

K,YD K,YD

where $K_p = \tan^2 \left(45 + \frac{\varphi}{2} \right)$

where

and

Standard Specifications for Structur	al Supports for Highway Signs, Luminaires and Traffic S	gnals	- 5	PECIFICATIONS	6
SPECIFICATIONS	COMMENTARY				
	Preliminary design methods include E				
	(1964, 1965), Hanson (1961), and Singh				
9	(1971). Detailed design methods are provid studies by GAI Consultants (1982), Poulos				
	Davis (1980), Borden and Gabr (1987), and F				
	(1984). Broms' procedures for embedment l				
	in cohesive and cohesionless soils are sui	ima-			
	rized herein, regarding the ultimate lateral so				
	sistance of the soils. Certain structures may rant additional considerations regarding limita				
	to the lateral displacement at the top of the				
	Some structures or soil conditions may requ				
	more detailed final design procedure than B				
	procedures.				
	Brome studied laterally loaded siles in	oho			
	Broms studied laterally loaded piles in sive and cohesionless soils. Simplifying ass				
	tions concerning the distribution of the soil				
	tions along the pile and statics were used to				
	mate the lateral resistance of the pile.	1-			
	Since the Broms' design method is base	d on			
	ultimate strength, an appropriate safety factor				
	be included in the shear load V_F and the mo	nent			
	M _F .				
	$V_F = V(\text{Safety factor})$ Eq. C	3–1			
	$M_F = M(\text{Safety factor})$ Eq. C	3-2			
	WF = M(Galety lactor) Eq. 0				
	The safety factor shall account for the p	acei-			
	ble under-capacity of the soil strength and over	load			
	factor for the loadings. In his paper Design o	Lat-			
	erally Loaded Piles, Broms suggested usin	, an			
	under-capacity factor of 0.7 and an overload f	actor			
	of 2 to 3. The value for the safety factor is th lected overload factor divided by the u				
	capacity factor. Other safety factor values ma	v be			
	used as approved by the owner. The reliabil	ty of			
	the soil information should be considered in a	eter-			
	mining the safety factor.				
	Broms' assumptions for the distribution	of a			
	cohesive soil's reactions at ultimate load				
	shown in Figure 13-1. Broms' solution for coh				
	soils may be presented by the following equ	ation			
	from which the required embedment length I	can			
	be found:				
· · · · · · · · · · · · · · · · · · ·	(4H+6D)	2.2			
	$L = 1.5D + q \left[1 + \sqrt{2 + \frac{(4H + 6D)}{q}} \right]$ Eq. C	5-5	•		

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Design Approach - Embedment Analysis</u>

SPECIFICATIONS	COMMENTARY
a	For the required embedment length <i>L</i> , the maxi mum moment in the shaft can be calculated as:
	$M_{F\max} = V_F \left(H + 0.54 \sqrt{\frac{V_F}{\gamma DK_p}} \right)$ Eq. C.13-9
	and is located at $\left(0.82\sqrt{\frac{V_F}{\gamma \ DK_p}}\right)$ below groundline.
	Figure 13–2. Foundation in Cohesionless Soil
13.6.1.2 Capacity	
The axial capacity, lateral capacity, and movements of the drilled shaft in various types of soils may be estimated according to methods prescribed in the Standard Specifications for Highway Bridges.	
13.6.2 Structural Design	

Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Design Approach – Cantilevered Wall Parameters</u>

		Gemi-	. Trapezoi	dal Pres	auce Dia	gram w	S FIDER	Above Cu	LT.
		Formul	act For Loc	do à Ma	menta				
	PROJEC	T: Tashie	acad lala	ació co 1.1	a11	DUE D			
	ADDRE	ss <u>Carinia</u>	everad 4n	Wind Wi	211	ARCH:			
				DRILL	PLAN	1	1	1	
	PIER NO.	SHAFT DIAM.	BELL DIAM.	TOP	TOP	PLAN BOTTOM	DEPTH		
	NO.	DIAM.	DIAM.	ELEV.	ELEV.	BOTTOM			
1.									
2.	1-1			1115/11					
3.	11			11.1.47					
4.	0.0	5(H-R)	20			P=Equivaler	nt pregou	re (que)	
5.						= Funchan	of cut he	ight	b
6.						= ZH, where	2219 Car	stant 4011	000
7.	H	(1. D				q = unitarm	michary	e prequire	(JCN)
8.	0.	75(H-R)		/		5-pilepier	span le	ngh (reet	
9 . 10.		4	4	100.1		R = distance		DEVE TO BOTTO	m
$\frac{10.}{11.}$	- 1	1 4		TOP ROCK		of cut (H= total cu		(Cant)	
$\frac{11}{12}$		R				F. = Force du			
13.		n	Pt.A			F2 - Force for	e to gurcv	10 (109)	
14.	1 TIK	11/1				FA - FALLE PAR	100 11 arg	FRE (100)	(169)
15.		¥	· · ·			FB = Farce Fa Ft = total f	arce at	poltan of	THE (KIDA)
16.		Pag	H 0.42			= F. (G) + F	2(G)+F3(GUIDTO	
17.		1-1	11 2	1.1		11	2	1100-	
18.	+ = 4	Fxa (in 12/F	F)						
19.				~					
20.	0.4	1a (H-R)+	12(P)(0.25(0.125(P)(H-	H-R)+ 0.75	(H-R)(P)				
21.	1.	49 (H-B) +	0.125 (P)(H-	R)+ 0.75(H.	R)(P) = For	ce per Foot	of wall	<11 ····	1
22.	F	(G) +FO	(5) + Fz (0	5) = Force 1	For aven Go	pan lengt	7		
23.		111.			0 1	2			
24.	**)~	MA (in 1b.F	+)		and.				
25.	F.	(H-E+R)+F	2 0.25(H-R) + (H- 0,25(H-R))	+F3 0.191+	+R = M	oment per	Foot of Wa	211
26.		di la constante de			T -	1			
27.	F.	(G)(H-R+R)	+ F2 (G) 0.25	(H-R)+ (H-A.2	5(H-R)) + Fal	5) (0.75(H-R)	+R = m	oment For the	an length
28.		121	L. I	2		1 2			11
29.	2							11200	
30.	Revise	Familia	that includ	e effective	cut height	He:			
31.32.33.33.33.33.33.33.33.33.33.33.33.33.		- 1		1.12 121		11 10	-	C	
32.		txA (IN 16/	R): 0.49	(Hv)+1/2(P)(D.29HV) + 0.	BHV(P)	= Force P	er Foot of	Wall
33.			F	(3) + F2	(G) + F	3(5)	France F	r given by	an length
34	(D) A	1 / . 1	~)
35. 36.	12	MA (in IV.	(7)						
		alu a	F2(G) [0.25 (H.	0.11.00	UT.E.A	10001100	- magaza	Ex culan	soan 1
<u>37(</u> 38.	r1	1 HV+6 +	12(9) 0.29 (4	+ INT-0.20	1111 + 13(9)	10.15 HV + H	= mormen		
38.	-	15)	6 3			2 4	lenger		1
40.			2			~			
40.		I	I			1			

Design Approach – Cantilevered Wall

PTM Engineered Foundation Construction, LLC Sheeting & Shoring, Augeroad Wiley, Driffed Hors Musing Address: 10:565 Steamer, 55 62:506 Physical Address: 10:565 Steamer, 55 62:508 Horsteil, 10:567 Address: 10:367 Steamer, 55 62:608 Notabin: 10:34733 6000 Jan 10:55 7347 4014 Email: Spowers (§ powersing/smrtills.com

JOB NAME: JOB LOCATION: JOB NUMBER:

GEIGER CONCRETE COMPANY - LIBERTY PLANT EXPANSION PROJECT 526 N. CHURCH ROAD; LIBERTY, MO 64068 JOB NO. SH21-3

vs. triang vs. I time

vs. I time

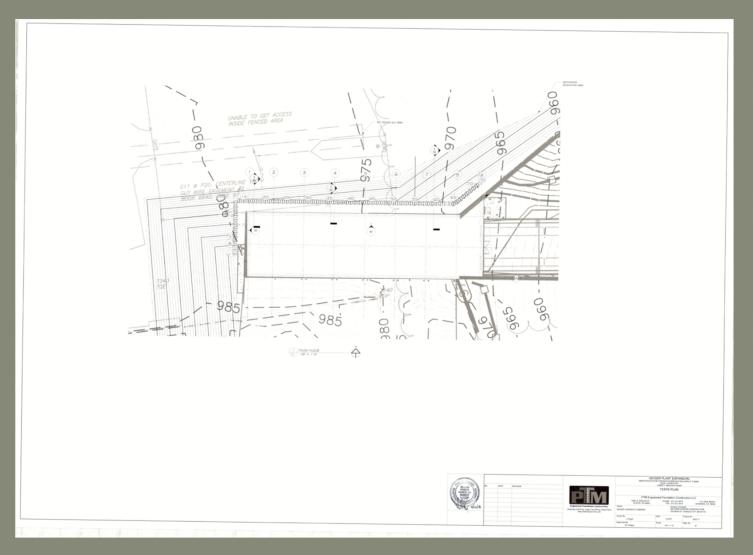
CANTILEVERED, DRILLED-IN, TANGENT PILE (TESPS) MASS EXCAVATION GRADING PLAN

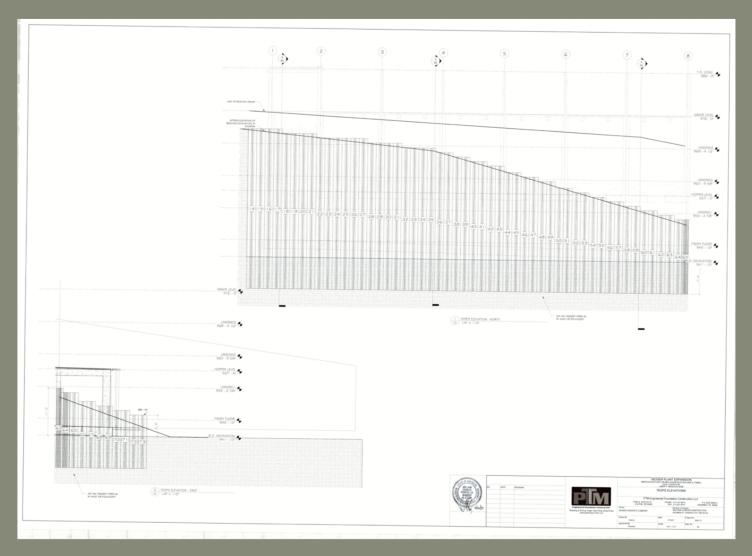
	Tangent Piles - North Wall Elex.	Tangord Plan - North Wall Eloy.	
	Cardineered TESPS - Tangent Plas 30 thru 51		
Calculation Location	Boctlos Modulus Calc 24" Diare. Hole	Section Modulus Calo, - 24" Diam. Hole Borros 5-2 5 5-5 - clapitra store over shale	
	Beings B-2 & B-8 - clay/investore over shale	TOP BLOPE EL 978 / TOW EL 957 / BOE EL 942	
	TOP LS RL \$71.0 TOP SHALE EL 964.0	TOP LS EL 9710 TOP SHALE EL 964.0	
un:	107 La BL. 1113, 107 375LB EL. 391 5	FOF LEASE FILL, FOF STOLE BL. BOTO	
Total vertical exposed height of wall in feet, "Ht" Vertical height of skope in feet, "Hts"	29.0 6.0	25.0	
Exposed height of rock above bottom of out in feet, "R"	22.0	22.0	
Pla/pietbeam span length in feet "s"	2.0	2.0	
Lateral component of vertical surcharge pressure in pel "q"	250.0	250.0	
Soldier pilelpienbeam embedment material	Imestone over shale	timestone over shale	
colate:			
Effective cut height in feet, "He"	10.0	7.5	
Pressure distribution height in feet, "Hv"	7.0	3.0	
évele Sami-Trapezoidal Earth Pressure Dist.			
Soil load constant "Z" Equiv. pressure in pst/tt. "P"	25.0 250.0	25.0 187.5	
Force "F1" in its	703.0	300.0	
Force "F2" in be	218.8	70.3	
Force "F3" in be	1312.5	421.9	
Total force "Ft" in kips	4.5	1.6	
Total Toe moment "M" in kip-ft	112.5	37.1	
Eccentricity "s" in ft	25.2	23.4	
mpare to Servi-Trap. to Triangular Dist :	45Hr	45Hv	
Total force "Ft" in kips	5.9	3.1	
Toe moment "M" in kip-ft	89.4	23.4	
Eccentricity "o" in ft	15.1	7.5	
der Pile/Pier/Deam Embedment (Broms' Method):			
Under-capacity factor	0.7	0.7	
Overload factor	2.50	2.50	
Safety factor	14	1.6	
Shear load "V" in kips Factored shear load "V" in kips	5.9 21.1	11.2	use max of seri-trap
Moment "M" in kip it	112.5		use max of semi-bag
Factored moment "Mf" in kia-ft	401.8	132.3	
Pile/pen/beam diameter "O" in ft	20	2.2	
Soil / took cohesion "c" in kaf	10.00	10.00	
°H°	19.1	11.8	
v	0.1	0.1	
Required embedment length, "L" in th	6.34	4.98	
pired PlaPlerBeen Size:			
Mmax in kip-ft (above bottom of excavation)	112.5	37.1	use max, of semi-bap
Mmax in kip-in (above bottom of excavation)	1390.2	444.7	
Allowable steel stress in kai	32.0	22.0	allowable = 0.04Fy
Required steel section in in*3	42.9	13.5	
Use	W14x30	W14x30	
or			
Design Length	35.3	30.0	
Imate Lateral Deflection at Top of Beem: Empirical Avg. = 0.002He, inches	0.24	0.10	
Calc. Lat. Defection - Cast. Beem w/ Conc. Loss:	92.0	0.16	
I, in M	201	291	
E. ksi	201	2910	
Net Spin Lergth for Deflection, #	10	0.0	
F1Location, R	27.6	24	
F1 Deflection, inches	0.9000	1 3000	
F2 Location, ft	27.8	24.5	
F2 Deflection, inches	0.9000	1 9900	
F3 Location, fl	24.6	23.1	
	0.0000	4.9900	
F3 Deflection, inches			
F3 Deflection, inches Sum of F1, F2, & F3 Deflections, inches Avg. Lat. Deflection - Estimated & Calculated:	0.00	0.00	

Parlamences - Soldier Mike/Planitieum Einbestmant 1) Bronet Alabola - AKINTO Standard Spacialization for Directival Spaces for Physics, Spin, Lonnarias and Todali Spaces. Adv.Child. Spaces. Spin. Lonnarias and J. Salakir Jeans. Adv.Child. Spaces. Specification 5 Algenay Bridges: Stift Alabos. 1992; Evidence for Algenay Bridges: Stift Algenay Bridges: Stift Alabos. 1992; Evidence for Algenay Bridges: Stift Algenay Bridges: Stift Alabos. 1992; Evidence for Algenay Bridges: Stift Algenay Bridges: Stift Alabos. 1992; Evidence for Algenay Bridges: Stift Algenay Bridges: Stift Alabos. 1992; Evidence for Algenay Bridges: Stift Algen

1.) Deflection calculations are hased sized soldlar beam

sections intriceed.

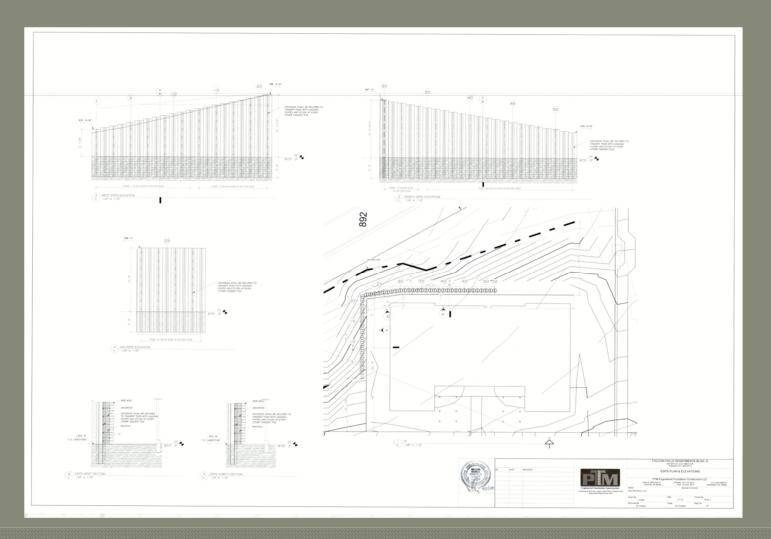

top PTMDesigns & Job Calculations/Geiger Ready-Mx Aggregate Tunnel - Liberty, Masour//Geiger Ready Mx Liberty Cardiovared TERS2 stella Alsensivilliam/Desisco/PTMDesig Thursday, Beplember 12, 2024 3,24,95 AM


Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Design Approach – One Tier Braced Wall Parameters</u>

1		hami-Ka	period al P	Reachine Y	lagran	W/ROCK A	Dave Lu	+= 5100	n an
			1 - 00		- /			SHEET NO	
		Emil	as For Loa	Jak Ma	20.100				
	PROJEC	T: reciriu	des for Lou	act & Man	Terrs of	DUE D	ATE		
	ADDRE	ss <u>neavice</u>	ak sharin.	S. Wall (One Titr	ARCH:			
				DRILL	PLAN	1	[1	
-	PIER NO.	SHAFT DIAM.	BELL DIAM.	TOP	TOP ELEV.	PLAN BOTTOM	DEPTH		
1.				ELEV.	ELEV.	Z= Congrant	thail land		
2.	1.1	1	'N	1	1111-111	P= Equivalent		Taro	
3.		0.25 (H-R)	X			F= Equivalent	E vertical	UT & Glope V	eighta
4.				2				ere Ha= alop	
5.		T	1	6		9 = uniForm	Surcharge	e acesaria (aus
6.	H	/	15			T= tieback	Force (169	(FF)	
7.		0.75 (H-R)	16	0	8	R= distance	Fran top 1	took to botta	n cut (Feet)
8.		Pt.B.	-			H= Vertical CU	the but	(Feet)	
9. 10.		11.12			Top ROAL	Fi= Farce due	to Gurch	Rige (106/FA	2
$\frac{10.}{11.}$		R				For Force for			100
12.		Pt.A -		1		Fr = total For			
13.		11.11 =	P=2H	10.591			F2-T/10		KAPA)
14.	11	1112418	7. 8			X = distance	to treback	R Level (Feet	2
15.		*				Tr = total h	eback For	ce (Kiph)	
16.	7. 7					= T(4)/1	000	CH LI	
	Golve Ft		0.75 (FitF2+	F3) ~	- assump	ian 100 tha	2500	of total	
18.		F1=	0.5g(H-R)	1.0		es tout the			
19. 20.		F2=	12(P) (0.25) P(0.75(H-1	H-K) = 0.12	=9(7)(H-R)				
$\frac{20.}{21.}$		+ 13=	P (0,19 (H-1	<))				177	
	AMAG	(nhalivix)	+ F2 0.25(H-	Dlas- (x-020	(10)7-01	1 125(11-0))	X-0.25(H	R) 3	
23	5	L	L		1		2		
24.	DEMA=	F. (H-R)+R	+ F2 0.25 (H-E	+ (H-0.25(H-R))	+ F3 0.75(H-	R)+R] - 1 (H	t-x) 5		
25.					7 7 5				
26	~			1		1 -1			
	Modity	For Keckan	ngular AEP	WOUTCHATE	ne -	9/18/2	2		
<u>28.</u> 29.	Forces		0.75(FitF2	460)					
29. 30.	TOTCEP		0,59(H-R)	119)					
30.		F2:							
32.	-		P(H.R)						
33.		_		1 22.2			1		
34.	+) EMB	= 0.6q(x)((x)+P(x)	(差)(5)).		
β5.	~	E			212		{		
	シュート	Fi H-K+	R) + F3 (H-	K+R)-T(H-X)(5)		/		
37.	~		1 1 0	1.	L.				
<u>38.</u> 39.		_				5 6			
$\frac{39}{40}$.									
)		I			<u>I</u>	L		

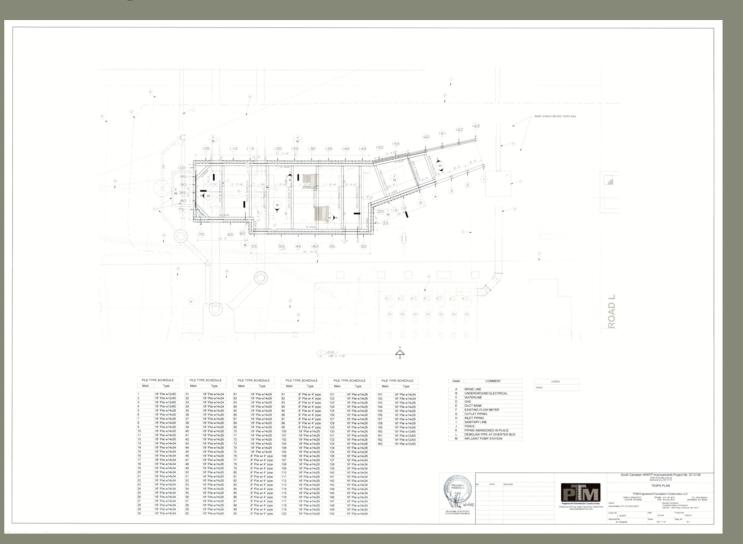
<u>Design Approach – One Tier Braced Wall</u>

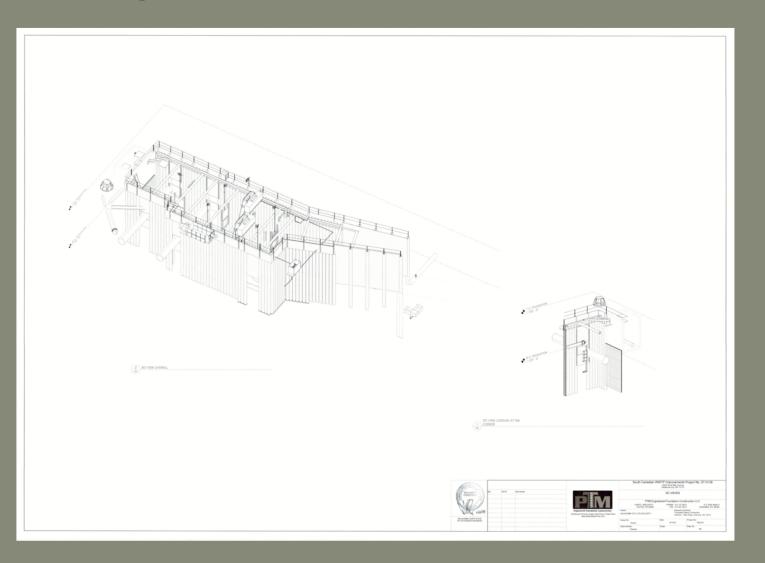
Explorer of Foundation State (Section 2002 Weillam Fr, Powers IR, F.E. AH Fref, Eng. Inc. 2003	PTM Engineerind Foundation Conditions, LLC Sheeting & Sharing, Augeroant Plang, Ordina Plant Mailling Advances PJ. Gane 2004LS, Sharinen, 65 64316 Physical Addresses 135855. Katolin Road; D. Reno, DK 7 Tel 1933-147-4636 Metable 123 873-4636 Metable 123 873-4636 Metable 123 873-4636 Metable 123 937-4636 Small: boowen:dgoowen:taylonnilli.com	Sufue IS 66062 2036				
JOB NAME: JOB LOCATION: JOB NUMBER:	WHO NEO SOUTH LAKE	AND GREEN GROOVE / SE 14TH STREET BIKE TUNNEL IMPROVEMENT PROJECT SE 14TH STREET BETWEEN SE J & SE P STREETS: BENTOMULLE, AR 72712 JOB NO. 5P424				
EXCAVATION SUPPORT AND PROTECTION SYSTEM (ESPS) INTERNALLY BRACED, DRILLED IN, TANGENT PILES, SOLDIE MASS EXCAVATION GRADWG PLAN	R PILES AND UNTREATED TIMBER LAGGING	ONE-TIER BRACED/TIEBACK WALL SEM TRAPEZOION, PRESSURE DISTRIBUTION				
Calculation Location	Braced TESPS - Turnel Ros - Target Piece T51 thro 153, 1195 Hov 1593, 1195 Hov 1593, 1195 Better Bishkin Cale - 347 Han How 89 221 a. Botting B-1 Isou B-0 - Richinge grant over hand iterative Statt E L. 1956 A+1, BOTTING OF SLOPE B, 1:598 B-0- BOW SL, 1277,5 +4; TOP OF LANESTONE EL, 1276 B	Bracet TESPS - Turvel Ros - Tanger Pies TRA, 105, 1152, 1152 Sector Moldun Gdi, 20 Oran, 1568, 1152 Society B 1 Ros 3- Stituty grand our lead Investore Society D, 1000-01, 1007 Sector Society B, 1000 B, 101 BOW EL 1377,5 44, TOP OF LINESTONE EL 1274 S				
Vertical exposed height in feet "H" Steps heigh "H" in feet Datamon to Invaria ("steak", "k" in feet Soli load constant "2" Egylar, prosound in positi. "P" Egylar, prosound in positi. "P" Pile (Baum): Braced Instantial span length in feet "s" Readwork Left Forces: Force "F" in Ibs/It Force "F" in Ibs/It Force "F" in Ibs/It Force "F" in Ibs/It Total force. "F" in Ibs/It Total force." I'n Ibs/It I'n Ibs	31 18,5 32 46,0 33 0,0 34 4,0 35 39 36 39 37 220 40 8201 41 2313 42 1422 43 65 92 44 45 92 46 24	16.6 4.0 0.0 4.0 30 619 250 5 5 8 8031 2213 1422 6033 18.4 55.2 -185.4 5.4 5.4				
Soliter Piko/Nordbaan Embodment: Bronin Method Under-capacity lacksr Overload Tacksr Shori Joad "V" in Kips Factored stract And "V" in Kips Moreart M" in Kop-E, insk of Maior Mb) Pacitored stractic 70" in 18 School Activet 70" in 18 Minas in Kip-E	52 0.79 53 2.29 54 3.27 55 3.37 55 2.242 59 2.242 50 2.242 50 50 50 50 50 50 50 50 50 50 50 50 50	6.70 2.50 3.57 16.40 65.72 14.54 13.40 1.50 3.50 3.50 3.50 3.54				
Summary of Calculations (allower àctions of exceewalker) Minas in 18-15, for span "s" Allowatch stored streed in kal Required steed sortion in im"3 Low Chargen Levelth T1 force, for span "s" in kips T1 declaration degrees T1 declaration in degrees T1 declaration in degrees T1 declaration in 3.35 – mas test load at declaration angle in kips Minas in web from T1 design load in Kip-11 (1546PI) Minas in web from T3 to sign in 1910	68 30038 69 371 70 86 71 80 71 80 73 80 74 233 75 92 75 92 76 92 77 92 78 92 78 92 78 92 78 92 78 92 79 92 79 92	185387 2225 36,0 40,0 1864 286,7 56,2 0 55,2 73,4 493,7 11,0				
Rogurd Sk In wele from Mrax in In ¹⁷³ 00 11 1 00 1 00 1 1 0 1 0 1 1 0 1 0 1						

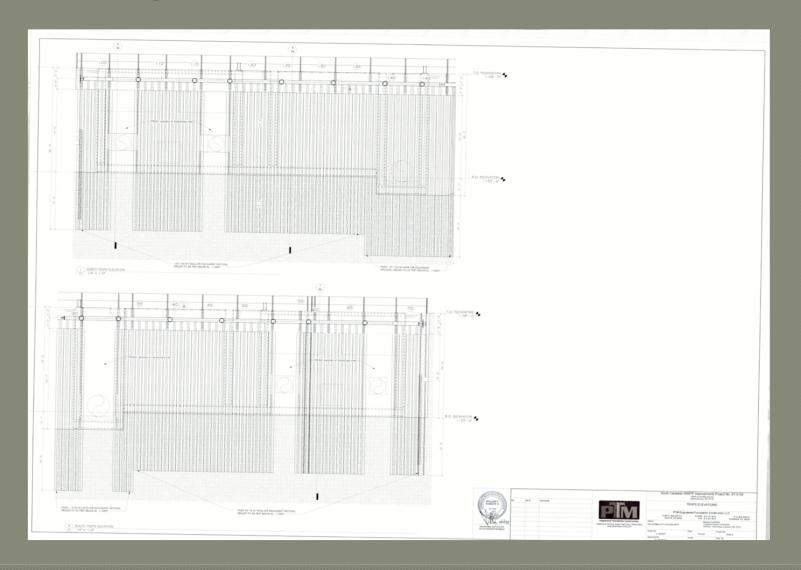


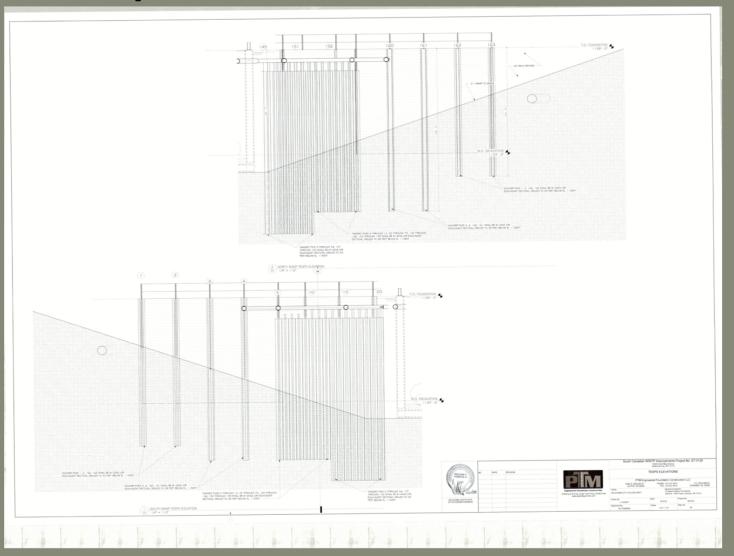
Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Case History – Falcon Falls Apartments, Building D –</u> <u>Gladstone, Missouri</u>

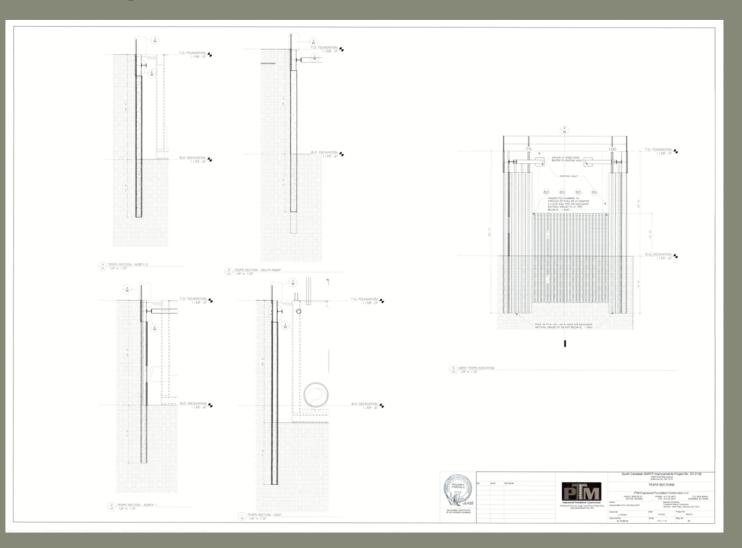
Drilled, Reinforced Concrete, Tangent Piles for Excavation Support and Protection Systems <u>Case History – Falcon Falls Apartments, Building D –</u> <u>Gladstone, Missouri</u>











Thank you for listening!

Questions???

Engineered Foundation Construction

